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Executive summary 

 

In this deliverable, we have explored the use of Big Data tools for improving the knowledge on solvent 
degradation, and particularly for identifying key degradation predictors. Initially, process and solvent analysis 
data from the ALIGN-CCUS RWE campaign with MEA were used. However, and despite working with data 
from the longest ever open MEA campaign, not enough degradation data was available. The attempts to 
analyse the process data did not lead to any new insights. There is a clear need to generate larger data sets 
on solvent degradation. However, doing that by solvent sampling and laboratory analysis would become 
prohibitively expensive. 

A large data set on solvent composition can be generated by using a technique for online solvent monitoring. 
In this work, we describe the development of the hardware and methodology to use a mini-ATR-FTIR for this 
purpose. The final system configuration includes not only the analytical equipment itself (ATR-FTIR), but also 
a methodology for switching between solvent and water circulation loops. The innovative feature of the 
methodology developed is in the use of de-ionized water (DI) as the medium for taking backgrounds (instead 
of air). Equipping the system with automated pumps and valves for switching between solvent and DI water 
flow has the added benefit of ensuring a clean crystal, thus lowering the probability of measurement errors 
due to solvent accumulating on the crystal surface (amine solutions are “sticky”). 

Despite all the progress on developing the methodology, the online test realized in a pilot plant using MDEA/PZ 
solvent gave erroneous measurements of solvent composition. The errors arise from software issues. In order 
to correct that, a more robust methodology for spectra analysis is required. In this work, we have tested 
different machine learning (ML) models for that end. The most successful models – convolutional neural 
networks – allow for the application of explainability methods which led to knowledge on key degradation 
predictors for MEA (wavenumbers 1350-1650 cm-1 explain most of the degradation). 

In conclusion, a robust methodology for generating online “Big Degradation Data” is needed, and the use of 
the mini-ATR seems like a promising route to achieve this goal. Once data is available, ML models can be 
used to interpret the spectra to derive information on solvent composition and degradation state. While the 
hardware side of the solution described seems sufficiently developed, the software side needs further 
attention. This report outlined next steps in the development so that a robust tool is available. 

 

 

  



 

 
Document No. 
 
Issue date 
Dissemination Level 
Page 

 
LAUNCH D1.2.1 - Guidelines for using Big Data 
Tools for degradation.docx 
Date: 13.04.2023 
Public 
4/27 

 

 

 

This document contains proprietary information of the LAUNCH Project. All rights reserved. Copying of (parts) of this document is forbidden without prior 
permission. 

 

Table of Contents 

1 INTRODUCTION ....................................................................................................................................... 5 

2 BIG DATA TOOLS FOR EVALUATING PLANT DATA ........................................................................... 6 

2.1 APPLYING CHEMOMETRICS TO SOLVENT DEGRADATION DATA .................................................................. 8 

2.2 HOW TO GENERATE BIG DEGRADATION DATA? ...................................................................................... 8 

2.2.1 MINI-ATR, offline operation ..................................................................................................... 10 

2.2.2 MINI-ATR, preparations for inline operation ............................................................................ 12 

2.2.3 Mini-ATR, operation at a pilot plant ......................................................................................... 19 

3 BIG DATA TOOLS APPLIED TO SOLVENT MANAGEMENT .............................................................. 22 

4 CONCLUSIONS AND FUTURE WORK ................................................................................................. 26 

5 REFERENCES ........................................................................................................................................ 27 

 

 



 

 
Document No. 
 
Issue date 
Dissemination Level 
Page 

 
LAUNCH D1.2.1 - Guidelines for using Big Data 
Tools for degradation.docx 
Date: 13.04.2023 
Public 
5/27 

 

 

 

This document contains proprietary information of the LAUNCH Project. All rights reserved. Copying of (parts) of this document is forbidden without prior 
permission. 

 

1 Introduction 

Amine-based post combustion CO2 capture (PCCC) is a mature technology, demonstrated at full scale, and 
currently entering implementation phase at various industries, including power plants, waste-to-energy 
facilities, chemical industries and ships. This means that a large data set will be available, from each of these 
plants individually, containing information on process data as well as solvent degradation data. Process data 
is generally available at a short frequency, with the various measurements in the plant (temperatures, 
pressures, flow, etc.) typically being logged many times per hour. Direct information on solvent degradation, 
on the other hand, derives from solvent sampling and offline analysis. This information is not available at real 
time, is much less frequent (typical intervals can be weekly, bi-weekly or monthly), and is expensive to 
generate. 

Aqueous amines suffer from degradation – oxidative and thermal – under different operating conditions in the 
capture plant [1]. In this report, we evaluate the possibility of using big data tools for identifying key degradation 
predictors. The degradation mechanism of interest here is oxidative degradation, which is the main cause of 
amine solvent losses due to degradation. In literature, simple molecules that are easy to analyse for, such as 
formate, have been proposed as a key component for tracking solvent oxidative degradation [2]. Formate is 
a common degradation product of all amines, which allows for developing a generalized approach regardless 
of the solvent of choice. Formate is typically analysed for by using ion chromatography, and within the same 
analysis, other heat stable salt anions can be identified, like acetate and oxalate.  

In the current report, data from a MEA campaign from RWE is used, consisting on process and solvent 
analysis data. 
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2 Big Data tools for evaluating plant data 

The target of this activity was to identify, amongst a set of process and solvent composition data, key 
parameters that would enable to predict the degradation behaviour of amines. In a first exercise, the MEA 
campaign at the RWE pilot plant [3] was selected. This campaign represented the largest and most complete 
dataset for a MEA campaign available within LAUNCH. Moreover, after a period of ca. 200 days of operation, 
the MEA degradation spiralled out of control, and an acceleration in solvent loss and the accumulation of 
degradation products could be observed. This is illustrated in Figure 1. 

 

Figure 1. MEA concentration and sum of concentrations of formate, acetate and oxalate as measured during RWE’s MEA 
campaign of 2017-2019. 

 

To perform the analysis in question, we have received process data from the RWE pilot, consisting on hourly 
averages of 64 process signals (temperatures, flows, pressures, etc.). The data represented the period 
between the 24th of August 2017 and the 1st of March 2019, with a total of 13298 entries for each signal. This 
leads to 851072 data points. 

For period between 24th of August 2017 and the 18th of July 2019, data on solvent composition is shared. This 
data was measured offline, and is available at a lower frequency. The water and CO2 contents in the solvent 
was measured on a daily basis. The MEA content was initially measured weekly, but from September 2017 
onwards, the frequency increased to twice a week. Iron, total sulphur, chloride, formate, nitrate, sulphate, 
acetate and oxalate were measured every 2 weeks. Finally, total Nitrosamines, No-HEGly, NDELA, OZD, 
HEIA and HEEDA concentrations were measured every 6 weeks (for clarity, these components names and 
CAS numbers are given in Table 1). This added to a total of 922 data points. 

 

 

 



 

 
Document No. 
 
Issue date 
Dissemination Level 
Page 

 
LAUNCH D1.2.1 - Guidelines for using Big Data 
Tools for degradation.docx 
Date: 13.04.2023 
Public 
7/27 

 

 

 

This document contains proprietary information of the LAUNCH Project. All rights reserved. Copying of (parts) of this document is forbidden without prior 
permission. 

 

Table 1 – List of components names and CAS numbers 

Abbreviation Name CAS number 

MEA monoethanolamine 141-43-5 

No-HeGly N-Nitroso(2-hydroxyethyl)glycine 80556-89-4 

NDELA N-nitrosodiethanolamine 1116-54-7 

OZD 2-Oxazolidone 497-25-6 

HEIA N-(2-hydroxyethyl)imidazolidinone 3699-54-5 

HEEDA N-(2-hydroxyethyl)ethylenediamine 111-41-1 

 

The nature of the process and the control loops of the plant create dependencies between the process entries. 
Moreover, operators’ actions greatly influence the behaviour of the system. And finally, process equipment 
limitations may mask correlations. In Figure 2, it can be seen that the solvent circulation rate is inversely 
related to the MEA concentration. This is logical, and a result of the operators actions – as the solvent 
degrades and loses cyclic capacity, the solvent circulation rate is increased by the operators in order to keep 
the CO2 capture rate constant. This is done consistently between February and May 2018, but at that point 
the pump approached its maximum capacity, and the solvent circulation rate remained high but somewhat 
constant until July that year, when a major intervention (bleed and feed) took place to try to control the 
accelerated degradation rate of MEA. 
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Figure 2. MEA concentration and solvent circulation rate. 

2.1 Applying chemometrics to solvent degradation data 

While the dataset generated at RWE during the 18 month MEA campaign (the longest ever open campaign 
with this solvent) is impressive, it is not a “Big Data” set. Particularly not when looking into degradation data, 
i.e., the accumulation of solvent degradation products over time. There are many data gaps, mostly deriving 
from the fact that performing solvent analysis is not only laborious but also very expensive. For total 
Nitrosamines, No-HEGly, NDELA, OZD, HEIA and HEEDA there are only 8 individual measurements for each 
of these components. And for formate, acetate and oxalate there are 23 data points for each. Moreover, for 
some major degradation compounds such as HeGly (N-(2-hydroxyethyl)glycine, CAS No: 5835-28-9), HEPO 
(4-(2-hydroxyethyl)piperazin-2-one, CAS No: 23936-04-1), and MEA-urea (N,N’-bis(2-hydroxyethyl)-urea, 
Cas No: 15438-70-7), no data was available.  

This discouraged the use of Big Data analytics and pointed at the direction of more traditional chemometric 
tools. For that, only the solvent composition data was used. The different degradation products and impurities 
accumulated in the system are used as predictors, with MEA concentration being the independent variable. 

The first step was data pre-treatment. Missing values were filled either with the value of the lower detection 
limit, the last value measured or by using linear interpolation. The choice had little influence on the results. 
Further data transformation included reporting the compositions as normalized weight percentages, and 
excluding water and CO2 concentrations from the dataset. 

After the data was scaled, a principal components analysis (PCA) was carried out. PCA is a common statistical 
technique for reducing the dimensionality of a dataset by linearly transforming the data such that the data 
variation can be described with fewer dimensions in the new coordinate system than the initial data. The PCA 
indicated that 3 principal components were sufficient to explain most of the variation in the data. Several 
degradation components seem to be equally important in predicting MEA degradation. A partial least square 
(PLS) analysis reveals that iron, formate, oxalate and acetate are the variables with the highest (absolute) 
regression coefficients. As mentioned, due to relative ease in analysing, the rate of accumulation of formate 
is commonly used as a proxy of degradation [2]. Our analysis indicates that the procedure is valid for MEA. 
Moreover, it has been pointed that, for various MEA campaigns, the rate of accumulation of iron in the solvent 
is well correlated to the rate of accumulation of formate [4]. This is also confirmed in our analysis. 

In general, no new insights were obtained by this chemometrics analysis. 

 

2.2 How to generate Big Degradation Data? 

While manipulating the RWE dataset, it quickly became clear that we had taken the wrong approach in trying 
to apply Big Data analytics to degradation. Instead of gathering the somewhat scarce dataset available and 
trying to squeeze useful and non-obvious information out of it, it would be more useful to turn the problem 
around. We then asked ourselves how to generate a Big Dataset which contains useful information on 
degradation – that could then be processed to predict degradation. 

An online measurement tool based on chemometrics was developed by TNO during the ALIGN-CCUS project, 
Figure 3. The setup consisted of different sensors, generating measurements that were then used to calculate 
the solvent composition and the loading of the samples. The method made use of a model relating physical 
properties of the solvent with its composition, and was built based on a chemometric approach [5], [6]. The 
sensors used were: NIR spectrometer, sound velocity meter, pressure sensors, temperature sensors, 
conductivity sensor, pH sensor, mass flow controller, UV vis spectrometer and refractive index . The system 
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was also equipped with a software with an automatic logging/operation system which allowed the operator to 
easily monitor the solvent composition in real time during operation, shown in Figure 4. 

 

Figure 3 - TNO's online monitoring tool (Chemcube) 

 

 

Figure 4: Real-time solvent monitoring 

 

In operation, the Chemcube used a slipstream on the order of 20 kg/h. The Chemcube operation started in a 

lab-scale and developed to TRL7 during the ALIGN-CCUS project, being operated at RWE in Niederaussem 

both with MEA and CESAR1. During those campaigns, however, issues were encountered with the data 

acquisition which made the setup more complex than originally intended. Moreover, as the model relied on 



 

 
Document No. 
 
Issue date 
Dissemination Level 
Page 

 
LAUNCH D1.2.1 - Guidelines for using Big Data 
Tools for degradation.docx 
Date: 13.04.2023 
Public 
10/27 

 

 

 

This document contains proprietary information of the LAUNCH Project. All rights reserved. Copying of (parts) of this document is forbidden without prior 
permission. 

 

the readings of many instruments, robustness became an issue. For instance, we have noticed that with 

drifting of some of the readings over time, particularly pH, the wrong concentrations were calculated. 

 

At the end of ALIGN-CCUS, tests were done using a mini-ATR, the Agilent Cary 630 FTIR system, as shown 

in Figure 5, in order to evaluate if this tool would enable a more robust online solvent monitoring system. 

 

 

 
 

 
2.2.1 MINI-ATR, offline operation 

FTIR analysis is extensively used at TNO for offline sample analysis and has consistently produced satisfying 
and reproduceable results using the Nicolet iS50 FTIR Spectrometer, a stationary bench-top instrument 
confined to the laboratory. However, the instrument is relatively big, expensive and sensitive, making it less 
easy to transport from place to place.  

Handheld ATR instruments exist and within ALIGN-CCUS initial steps have been taken to explore the 
possibility of employing such an instrument on-site in continuous monitoring of solvent quality. The mini-ATR 
holds several advantages over the Chemcube, the most important being its compactness and ease of 
handling, ease of operation and calibration and simple yet efficient construction.  

The mini-ATR was calibrated for the same solvents as the Chemcube: fresh 30 wt% MEA and CESAR-1. Both 
calibrations were highly linear. The MEA solvent has an accuracy of ±0.4 wt% and ±0.17 wt% for MEA and 
CO2 respectively, while the CESAR-1 solvent has an accuracy of ±0.2 wt%, ±0.1 wt%, and ±0.1 wt% for AMP, 
PZ, and CO2 respectively. Figure 6 a, b, and c show the good fit between the real composition and the 
composition predicted by the mini-ATR, for AMP, PZ and CO2, respectively. 

With the promising results obtained in ALIGN-CCUS, it was decided to work with the mini-ATR in LAUNCH-
CCUS, in detriment of the Chemcube. Since the interest was in generating “real-time” degradation data, the 
system had to be adapted so that it could be installed in-line, processing a slip-stream of the solvent.  

Figure 5a and 7b: the mini ATR seen from above and in perspective 
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Figure 6 a, b, c: Predicted vs actual composition for AMP, PZ and CO2 (from top), for the calibration set data 
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2.2.2 MINI-ATR, preparations for inline operation 

Agilent, the mini-ATR provider, also provides a flow cell that allows for a solvent stream to be connected to 
the mini-ATR. This hardware was purchased by TNO, and a new operational methodology was developed.  

In operation, the mini-ATR continuously pumps a slip stream to a flow-through cell placed on the ATR’s 
measuring location. Measurements are taken at a fixed interval that can range from every five seconds to 
hourly and the concentration of solvent and dissolved CO2 is reported instantaneously. Test measurements 
with the ATR have been conducted at TNO, shown in Figure 7, with promising results.  

 

Figure 7 a) and b): Test runs with mini-ATR. MEA concentration on top and CO2 concentration below. Run over 6 
minutes to the left, and run over 2 days to the right  

 

In Figure 7 a), the measurement is accurate and stable over a period of about 6 minutes. However, for more 
extensive trials, as shown in Figure 7 b) lasting for ca. 6 days, some problems were encountered including 
drifting of the reported concentration and the software crashing. Figure 7 b) shows that the MEA concentration 
reading starts at 30 wt% with CO2 loading of around 5 wt% (as expected). However, the concentrations drifted 
towards 40 wt% and 3 wt%, respectively over the course of 48 hours. 

The most likely culprit of this drifting is a lack of reference spectra: In manual operation, a reference spectrum 
is manually taken before analysing any sample, to remove the spectrum of the background medium, which 
normally is air. In this manner results are reproduceable in different background conditions. When operating 
continuously with a solvent flowing through the flow cell, there are no opportunities to take new backgrounds. 
Therefore, the methodology was modified so that water is used as the background. 

To automate the background procedure, a three-way valve was installed prior to the flow cell, allowing us to 
periodically pump deionized water through the system. The DI water is also used for cleaning the glass, 
avoiding deposition of impurities overtime. Once the glass is considered clean (i.e., after running with DI water 
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for a period understood as sufficient, as per our tests around 5 minutes), a new background can be taken. 
This is a relatively simple solution yet potentially very efficient. The P&ID of the mini-ATR system for inline 
measurements is shown is Figure 8, with the three-way valve allowing for switching between water and 
solvent. It also includes another, optional three-way valve, that would allow for the water waste to be disposed 
of. In operations with large scale plants, this extra step would not be necessary, as the waste water flow 
consists of a 20 L/h flow, over 5 minutes run, thus adding 1,7 L of water to the plant inventory. This would be 
a negligible addition, and the extra water could easily be evaporated via the water wash. However, in small 
scale plants, particularly in LAUNCH rigs, the flow through the mini-ATR is of the same magnitude of the 
solvent circulation flow, and the added water would disturb the solvent composition, generating a significant 
dilution. Therefore, in small scale systems, the disposal of the waste water is necessary.  

 

Figure 8. Schematic of continuous solvent monitoring with mini-ATR 

 

To facilitate online solvent monitoring, the full process of measurement of single beam spectrums, 
transformation into absorbance, quantification of the spectrum and visualization have been automated. The 
spectra measured by the ATR are automatically uploaded to a TNO server at fixed intervals. This is done by 
means of using a scheduled task on a Windows server that starts a Python script. Copying of the raw source 
files (raw measurements and valve position data) to the processing server ensures traceability and enables 
backup of the data, before processing steps begin. This ensures that a reliable Big Data set is collected over 
time, that can then be analysed for. 

The processing server sorts the raw measurements into background files and sample files based on the 
position data of the inlet valve. Next, the script transforms the single beam measurements into absorbance 
spectrums. The absorbance spectrums are quantified using a partial least squares model present in the 
Microlab Expert software accompanying the Cary 630 FTIR system.  

The quantification software requires a Windows environment, so it runs on a separate server (the 
quantification server). The absorbance spectra generated on the processing server are sent to the 
quantification server automatically every 30 minutes. A scheduled task script uses the quantification software 
to predict the amine content and CO2 loading in the solvent being monitored. Results are pulled by the 
processing server that stores the predicted solvent composition in a time-series Database (InfluxDB). 

The database’s accompanying visualization platform (Grafana) provides visualization capabilities of all the 
logged data. Figure 9 shows a screenshot of an interactive dashboard used for visualizing solvent 
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composition. Operators, analysts and others can easily make and store their own dashboards, suited to the 
tasks that they need to perform. This is a significant improvement in time and tediousness over the earlier 
process where a lot of manual work was required, such as manual copying and (Excel) spreadsheet 
manipulation of data. 

 

Figure 9. Example of solvent composition visualized in Grafana 

 

The dynamic measurements, calculation and visualization by means of the hardware modification and TNO’s 
software allow for the use of the ATR-FTIR as an online tool for solvent monitoring. The setup has been 
successfully tested in a laboratory environment with MEA. Following that, and in combination with the Dutch 
national project DECIPHER, the mini-ATR system was tested at a large scale pilot plant at the HVC waste-to-
energy facility in Alkmaar. The plant operates with a blend of MDEA and PZ, therefore a new calibration was 
required. 

In the schematic representation of the mini-ATR system shown in Figure 8, only one pump is used. In practice, 
it was noted that this configuration led to occasional air flow into the system, causing measurement errors. 
Therefore, the flowsheet was modified according to Figure 10, to include a solvent sump (a small vessel with 
ca. 500 mL), and a second pump. A picture of the final configuration of the system is given in Figure 11. 
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Figure 10. Scheme of the Mini-ATR configuration. Pumps represented by the blue circles with a “P”; 3-way valve 
represented by the “Switch” box. 
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Figure 11, Mini-ATR setup 

To determine the concentration of amine (MDEA/Piperazine in this case), water and CO2, a new calibration 
was made. The calibration lines, for CO2 (Figure 12), water (Figure 13), MDEA (Figure 14) and Piperazine 
(Figure 15) are given next. The x-axis shows the wt% of the components in each of the samples prepared to 
perform the calibration, whereas the y-axis show the model predictions. 
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Figure 12, Calibration line for CO2 in the mini-ATR 

 

 

Figure 13, Calibration line for H2O in the mini-ATR 
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Figure 14, Calibration line for MDEA in the mini-ATR 

 

 

Figure 15, Calibration line for Piperazine in the mini-ATR 

 

To validate the mini-ATR calibration, a first test was to put a droplet on the mini-ATR cell (i.e., to operate 
without the flow cell). The result of this is in Table 2, and show good agreement between the mini-ATR 
measurements and the prepared solvent.  
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Table 2, Mini-ATR validation tests 

Compound: Prepared solvent (wt%): Measured 1 (wt%): Measured 2 (wt%): 

MDEA 33.64 32.70 32.76 

PZ 4.87 4.76 4.94 

H2O 59.01 59.66 59.39 

CO2 2.49 2.88 2.91 

 

2.2.3 Mini-ATR, operation at a pilot plant 

After the equipment was validated in the lab, the Mini-ATR was taken to HVC and connected to the CO2 
capture pilot plant, taking a slip stream of the rich solvent via a sampling port. The equipment was at HVC for 
10 days, and the collected data is shown in Figure 16. Unfortunately, stable operation was only achieved 
during a couple of hours in the beginning of the campaign, Figure 17, and for two consecutive days at the end 
of the campaign, Figure 18.  

 

 

Figure 16, Overview of Mini-ATR campaign at HVC. Green: MDEA wt% composition (left y-axis) Yellow: PZ wt% 
composition (right y-axis)  
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Figure 17, Mini-ATR operation during times with device issues. Green: MDEA wt% composition (left y-axis) Yellow: PZ 
wt% composition (right y-axis) 

 

 

Figure 18, Example of stable Mini-ATR operation during the campaign. Green: MDEA wt% composition (left y-axis) Yellow: 
PZ wt% composition (right y-axis) 

 

In order to validate the results of the Mini-ATR, the data was compared with the offline sample analysis 
performed at TNO using Ion Chromatography (IC), and specifically cation chromatography. The comparison 
was done for 3 different periods and it is shown on Table 3. It is possible to observe that the results did not 
agree with the IC results. Some of the reasons identified include:  

1. The technology used is based on the spectra of the components. In the case of MDEA and Piperazine, 
some of the peaks of the spectra overlap which means that the concentration could be read as both 
MDEA or Piperazine. This introduces errors to the measurement.  

2. During the period of the measurements, the solvent was already degraded which has an impact on 
the accuracy of the measurements due to the fact that the calibration lines are made using fresh 
solvent. Improving the calibration line by adding degraded samples to it can increase the accuracy of 
the results for future experiments.  
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3. The Agilent software introduces a time delay that interferes in the measurements. Over time, due to 
the delay, the background is mistakenly measured (instead of data) and the following measurements 
will show a significant deviation. This can be observed in Figure 17 in which the concentrations for 
both MDEA and Piperazine were higher in the beginning of the measurement period, but decreased 
abruptly and with no apparent cause. This software delay error was detected, but no solution was yet 
found. One possibility could be not to use the Agilent software, as described in Chapter 3. 

 

Table 3. Comparison of the Mini-ATR and IC results for MDEA, Piperazine, CO2 and water 

 

Component 
Mini-ATR IC 

Error 
wt% mol/L wt% mol/L 

8-sep 

MDEA 41.8  30.6  37% 

PZ 11.4  5.2  119% 

CO2 1.7 0.9  0.6 50% 

H2O 45.1  48.0  -6% 

16-sep 

MDEA 31.8  30.5  4% 

PZ 7.4  5.1  45% 

CO2 3.9 0.9  0.7 29% 

H2O 56.9  48.0  19% 

19-sep 

MDEA 37.7  28.9  30% 

PZ 8.4  4.8  74% 

CO2 2.3 0.5  0.7 -19% 

H2O 51.6  49.0  5% 

 

Online operation of the Mini-ATR was accomplished enabling the concentration to be monitored in real-time 
during operation of the pilot plant. Therefore, the proof of concept was achieved. Longer operation of the Mini-
ATR needs to be realized once the issues discussed above regarding the measurement accuracy are solved. 
In order to overcome such issues, TNO is developing a new data analysis technique using AI (machine 
learning), as described in Chapter 3. 
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3 Big Data tools applied to solvent management 

The spectra generated by the ATR-FTIR while monitoring the solvent in real time are typically used to calculate 
the solvent composition based on calibrations, as discussed in this report, item 2.2. Specific peaks in the 
spectra correspond to the components of interest, and these are normally analysed. However, the entire 
spectrum holds information about the concentrations of all degradation products that are formed in the solvent 
over time. Using artificial intelligence (AI) and machine learning (ML) methodologies, the entire spectra can 
be studied. Based on this information, an indication of solvent quality can be made. 

One key objective of LAUNCH was to evaluate the use of AI/ML (Big Data tools) to improve the understanding 
of solvent degradation. If AI/ML methods can extract useful information from ATR FTIR spectra on the 
degradation of solvent over time, then the online spectra information can be interpreted by the plant operators 
to assess the state of the solvent, and support decision making regarding the use of solvent management 
techniques (e.g., when to start reclaiming? When to stop?). The current definition of a “dirty” solvent is 
arbitrary, and within LAUNCH we have shown that techniques to remove impurities from degraded solvent 
can actually lead to accelerated degradation. The mechanisms behind that are not yet fully understood, but 
there is evidence that certain (unknown) impurities act to retard degradation. Some impurities may act as 
oxygen and/or radical scavengers, some impurities may chelate and deactivate metals. The fact that the 
complex chemistry behind the growing body of evidence against “over-cleaning” the solvent is unknown gives 
further support to the use of AI/ML to perform data analysis.  

As discussed, the traditional method for analysing ATR-FTIR data uses partial lest squares (PLS) regression 
to interpret the spectra data and derive composition information. The software for making that analysis is 
supplied together with the equipment (Agilent is the supplier of the TNO equipment, but other suppliers are 
available such as Metler Toledo, Thermo Fisher, etc.). The user needs to select which ranges of the spectra 
would correspond to different components in the system, and then process a number of calibration samples 
(at least 20) from which data is derived and used in the regression. Normally, the calibration procedure for a 
new solvent takes a couple of days, so it is not very work-intensive. However, when a CO2 capture plant is in 
operation, the solvent composition changes over time due to the accumulation of flue gas impurities, metals 
from the materials of construction and degradation products in the solvent. With that, more “noise” is present 
in the ATF-FTIR spectra and the predictive capabilities of the original PLS model is lost (see poor predictions 
shown in Table 3). Another important point to notice is that all the information in that “noise” is lost with the 
current approach. 

Therefore, we looked into the possibility of using a ML methodology to evaluate the composition and 
degradation level of amine samples. For that, ATR-FTIR measurement data for amine solutions of different 
degradation levels (scores) was generated. The data was divided into training and test datasets. A machine 
learning model (artificial neural network) was trained to predict the degradation level based on the FTIR 
spectrum, and the model accuracy was evaluated with the test dataset. As LAUNCH ultimate goal is to 
generate more knowledge to improve understanding of degradation, explanainability techniques were used 
to show which parts of the spectrum the model considers most informative when making predictions. With 
this, the ML model findings can be combined with experts inputs to generate new knowledge. 

A total of 64 ATR-FTIR scans (21 samples, measurements in triplicates) were performed, with sample 
degradation level ranging from 0 (fresh) to 10 (fully degraded). The absorbance data as a function of the 
wavenumber for each sample is given in Figure 19. All tests were performed with 30wt% MEA.  

The fully degraded solvent was obtained from the RWE pilot plant, after the solvent was operational for around 
300 days. The fresh solvent was prepared by TNO using Sigma-Aldrich 99% purity MEA and DI water. The 
intermediate degradation levels were achieved by diluting fully degraded solvent with fresh solvent. The 
starting composition of the degraded solvent, measured by the ATR-FTIR was 25 wt% MEA, with a loading 
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of 0.22 mol/mol. To bring the composition to 30 wt%, MEA was added to the solvent. After that, the 
composition was determined again by FTIR to be 30 wt% MEA, and the resulting CO2 loading was 0.17 
mol/mol. The fresh MEA solvent was then prepared (gravimetrically) with this same composition and loading. 
It is therefore expected that all the solutions tested had the same MEA and CO2 content. However, as 
previously discussed in this report, the presence of degradation products in the solution can cause the FTIR 
measurements to deviate. Hence, we are not able to discard the possibility that there would have been 
differences in the MEA content and CO2 loading between the degraded sample (after composition correction) 
and the fresh solvent separated. In future studies, the composition should also be verified by ion 
chromatography. 

 

 

Figure 19. ATR-FTIR spectra of all 64 scans performed 

 
Using the full FTIR spectra as input, the model target is to predict the degradation level. This can either be 
set as a regression or a classification problem. In regression, the scores are treated as continuous, and the 
model predicts a numeric value corresponding to the score. In a classification problem, the scores are treated 
as discreet classes and the model predicts a degradation group the spectrum belongs to.  

It was decided to frame the problem as a regression problem for two main reasons: i) it allows for prediction 
of spectra in between current evenly spaced scores, which is likely to occur in practice; ii) classification of 21 
classes with 3 measurements per class is a big challenge as there are very little examples per class to learn 
from, and the distinction between neighbouring classes is fuzzy. 
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Next, 3 different types of models were applied, namely: i) a “regular” feedforward artificial neural network 
(ANN); ii) a fully convolutional network (FCN); iii) a residual Network (ResNet). The latter two networks are 
so-called convolutional neural networks (CNN). CNN are specifically designed to process image data (for 
instance for image recognition) and use convolutional filters to extract feature maps from the images. These 
feature maps typically correspond to elementary parts of the image such as edges, lines, basic shapes, etc. 
The neural network then learns to connect these elementary parts to things/objects it can learn to recognize. 
By treating the FTIR spectra as a one dimensional image, these networks can be used to predict amine 
degradation levels. 

All three models were trained on the same 45 spectra (70%) and tested on the same 13 (20%) spectra. The 
plots in Figure 20 show the predicted value versus the true value for each of the three networks. 

 

MLP FCN ResNet 

   

Figure 20. Predicted value versus the true value for each of the three networks 

 

As seen in Figure 20, all network types can predict the degradation levels with very good fit (R2 > 0.99), but 
there were some differences in the ease of training and setting up the models. The “regular” ANN was the 
easiest to set up and quickest to train and didn’t require any sort of “tweaking” of the hyperparameters. In 
addition, it was also the most accurate (although all models were very close in accuracy). The FCN took longer 
to set-up and train and was quite sensitive to hyperparameters values. The ResNet took longest to train and 
was most sensitive to the specific hyperparameter values. There were many times that the ResNet never 
converged (training is a stochastic process so doesn’t always lead to the same outcomes), so in practice it 
was the least useable. 

While the MLP is simplest and most accurate, the reason the FCN/ResNet were used was that they allow the 
use of explainability methods to see which parts of the spectrum is mostly used when making a prediction. 
With such methods, we aim to explain how the model comes to a certain prediction, as the internal parameters 
are learned from data alone and don’t always have a particular (physical) meaning, through the use of a so-
called “activation map”. At the end of the convolutional network, a global average pooling layer (GAP) is 
added, which takes the average of all the feature maps at the last convolutional layer, and the weight between 
this layer and the output to indicate which part of the spectrum has the highest activation when a prediction is 
made. We can directly map this activation back onto the original input. This allows us to see which parts of 
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the input spectra contribute most to making a prediction and whether the model learn from the “correct” parts 
of the spectrum, i.e., the parts that the experts judge as important. 

Figure 21 left shows the scaled activation map for all spectra using the FCN. Parts coloured red are the ones 
the model uses the most when making a prediction. As can be seen, there are a number of areas that FCN 
focusses on. These correspond to the following wavenumbers: 900-1100; 1350-1650; 2850-3050; 3500-3550 
cm-1. However, as can be seen, there is quite some variability from one spectrum to the next; especially 
wavenumbers 1350-1650 cm-1 show large variation, all the way from dark red to dark blue. These parts where 
the variation is highest are actually the most indicative wavenumbers, as a change in these parts leads to the 
highest change in model activation (and thus output prediction). Figure 21 right shows the average activation 
and 5th-95th percentile for all spectra combined. The wider the blue band, the most important the wavenumbers 
for the prediction. This means that the wavenumbers 1350-1650 cm-1 explain most of the degradation 
information. 

 

  

Figure 21. Left: activation maps; Right: average activation and 5th-95th percentile for all spectra. Wavenumbers given in 
cm-1 

 
The results clearly indicate that ML methods are capable of extracting useful information from FTIR spectra 
of amine samples to indicate the level of degradation of the solvent. This is extremely useful as it will allow us 
to incorporate a more robust data analysis methodology to the online solvent monitoring tool under 
development, based on the use of the ATR-FTIR. This not only allows for analysing the composition of the 
solvent, but also its degradation level. In this sense, it can be used as a signal to trigger operator action for 
solvent management. Moreover, the use of “raw” absorbance data by the ML avoids the need to use the 
Agilent software. This circumvents the issues with data logging delays caused by that software.  
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4 Conclusions and future work 

In this deliverable, we have explored the use of Big Data tools for improving the knowledge on solvent 
degradation, and particularly for identifying key degradation predictors. Initially, process and solvent analysis 
data from the ALIGN-CCUS RWE campaign with MEA were used. However, and despite working with data 
from the longest ever open MEA campaign, not enough degradation data was available. The attempts to 
analyse the process data did not lead to any new insights. There is a clear need to generate larger data sets 
on solvent degradation. However, doing that by solvent sampling and laboratory analysis would become 
prohibitively expensive. 

A large data set on solvent composition can be generated by using a technique for online solvent monitoring. 
In this work, we describe the development of the hardware and methodology to use a mini-ATR-FTIR for this 
purpose. The final system configuration includes not only the analytical equipment itself (ATR-FTIR), but also 
a methodology for switching between solvent and water circulation loops. The innovative feature of the 
methodology developed is in the use of de-ionized water (DI) as the medium for taking backgrounds (instead 
of air). Equipping the system with automated pumps and valves for switching between solvent and DI water 
flow has the added benefit of ensuring a clean crystal, thus lowering the probability of measurement errors 
due to solvent accumulating on the crystal surface (amine solutions are “sticky”). 

Despite all the progress on developing the methodology, the online test realized in a pilot plant using MDEA/PZ 
solvent gave erroneous measurements of solvent composition. The errors arise from software issues. In order 
to correct that, a more robust methodology for spectra analysis is required. In this work, we have tested 
different machine learning (ML) models for that end. The most successful models – convolutional neural 
networks – allow for the application of explainability methods which led to knowledge on key degradation 
predictors for MEA (wavenumbers 1350-1650 cm-1 explain most of the degradation). 

In conclusion, a robust methodology for generating online “Big Degradation Data” is needed, and the use of 
the mini-ATR seems like a promising route to achieve this goal. Once data is available, ML models can be 
used to interpret the spectra to derive information on solvent composition and degradation state. While the 
hardware side of the solution described seems sufficiently developed, the software side needs further 
attention. 

Within LAUNCH, the ML models were only tested on MEA solutions derived from the degraded solvent from 
the RWE pilot. The different degradation levels were artificially generated by diluting a degraded solvent with 
fresh solvent. Ideally, the model should be used with spectra generated over time at different operational 
plants. For that, long-term Big Data sets from the ATR-FTIR is needed. Moreover, work with other solvents 
(CESAR1, MDEA/PZ blends) is also needed. This will prove the robustness of the methodology developed. 
The ML model predictions should be validated against offline solvent analysis, to validate the methodology 
for the different solvent tested. 

Future development steps should also include investigating whether the FTIR data can be integrated with 
other real-time plant data (e.g. operating conditions) to predict degradation over time, and assess the impact 
of solvent management strategies.  
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